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Overview

Random two-dimensional geometry is an area of probability theory which studies
random planar curves, shapes, and surfaces.
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Motivated by questions from statistical mechanics
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Random planar maps
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Percolation

» Mathematical model for how a gas or a
fluid flows through a porous medium

» Introduced in the mathematics literature by
Hammersley and Welsh (1957)

» Motivation: understand the flow of gas
through a gas mask

» Graph G = (V,E), p€(0,1)

» Color the hexagons red or black based on
the toss of an independent p-coin

» Interested in connectivity properties of the
resulting graph: cluster boundaries

» How does one mathematically describe the
limit of the interface as the mesh size — 07
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Percolation on a 1000 x 1000 box, conformally mapped to D. Shown are the clusters

which touch the boundary.
2019
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Two-dimensional Brownian motion

Two-dimensional Brownian motion
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Two-dimensional Brownian motion

Benoit Mandelbrot (1924-2010)
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Two-dimensional Brownian motion

Mandelbrot set
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Two-dimensional Brownian motion

Two-dimensional Brownian motion
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Two-dimensional Brownian motion

Can one mathematically analyze the outer boundary of Brownian motion?
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Percolation Brownian motion Uniform spanning tree
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Percolation Brownian motion Uniform spanning tree

» Models (and others) have been around for many decades, studied by
mathematicians and physicists

» Tremendous progress in the last 20 years, much of it starting with an idea of Oded
Schramm combining ideas from complex analysis, geometry, and probability

» In a nutshell, Schramm discovered a tractable way of describing the random curves
which appear in these models in a unifed manner

April 6, 2019 8/30
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Riemann mapping theorem

Suppose that U, V are simply connected domains in C. Then there exists a
conformal map ¢: U — V.

In fact, there is exactly a three-parameter family of conformal maps.

Jason Miller (Cambridge) Random planar geometry April 6, 2019



Loewner evolution

» Mathematical tool invented by Charles
Loewner in the 1920s to encode curves in C

Jason Miller (Cambridge) Random planar geometry April 6, 2019 10/30



Loewner evolution

» Mathematical tool invented by Charles . R
Loewner in the 1920s to encode curves in C [ il 3

» Developed while trying to solve the
Bieberbach conjecture, a famous problem
in complex analysis

Jason Miller (Cambridge) Random planar geometry April 6, 2019 10 /30



Loewner evolution

» Mathematical tool invented by Charles
Loewner in the 1920s to encode curves in C \ 2t

» Developed while trying to solve the
Bieberbach conjecture, a famous problem
in complex analysis

» Example: consider the straight line
y(t)=+V2tiinH={z€ C:Im(z) >0}

Jason Miller (Cambridge) Random planar geometry April 6, 2019



Loewner evolution

» Mathematical tool invented by Charles
Loewner in the 1920s to encode curves in C \ 2t

» Developed while trying to solve the
Bieberbach conjecture, a famous problem
in complex analysis

» Example: consider the straight line
y(t)=+V2tiinH={z€ C:Im(z) >0}

» gi(z) = v/z% 4 4t conformally maps
H \ [0,v2ti] to H g(z) = V22 + 4t

Jason Miller (Cambridge) Random planar geometry April 6, 2019 10/30



Loewner evolution

» Mathematical tool invented by Charles
Loewner in the 1920s to encode curves in C \ 2t

» Developed while trying to solve the
Bieberbach conjecture, a famous problem
in complex analysis

» Example: consider the straight line
y(t)=+V2tiinH={z€ C:Im(z) >0}

» gi(z) = v/z% 4 4t conformally maps
H \ [0,v2ti] to H g(z) = V22 + 4t

4 2
222+ 4t g(2)

Oigi(z) =

Jason Miller (Cambridge) Random planar geometry April 6, 2019 10/30



Loewner evolution

» Mathematical tool invented by Charles
Loewner in the 1920s to encode curves in C \ 2t

» Developed while trying to solve the
Bieberbach conjecture, a famous problem
in complex analysis

» Example: consider the straight line
y(t)=+V2tiinH={z€ C:Im(z) >0}

» gi(z) = v/z% 4 4t conformally maps
H \ [0,v2ti] to H g(z) = V22 + 4t

4 2
V2 + 4t g&(2)
» This ODE (for each fixed z) determines the

family of maps (g¢) which in turn
determines ~ ¢

Oigi(z) =

Jason Miller (Cambridge) Random planar geometry April 6, 2019 10/30



Loewner evolution

» Mathematical tool invented by Charles
Loewner in the 1920s to encode curves in C \ 2t

» Developed while trying to solve the
Bieberbach conjecture, a famous problem
in complex analysis

» Example: consider the straight line
y(t)=+V2tiinH={z€ C:Im(z) >0}

» gi(z) = v/z% 4 4t conformally maps
H \ [0,v2ti] to H g(z) = V22 + 4t

4 2
V2 + 4t g&(2)
» This ODE (for each fixed z) determines the
family of maps (g¢) which in turn
determines ~ ¢

Oigi(z) =

» This is called the Loewner evolution for ~
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Loewner evolution

» Suppose that 7 is a non-crossing curve in H
from 0 to oo
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Loewner evolution

» Suppose that v is a non-crossing curve in H
from 0 to oo

» Let g be the unique conformal map
H\ v([0, t]) to H with g¢(z) —z — 0 as
z— 00

» Theorem: The maps g; satisfy the ODE
0g(z) = — - )=z
SO ETANE

where U is a continuous R-valued function
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Loewner evolution

Y(t)
» Suppose that v is a non-crossing curve in H
from 0 to oo
» Let g be the unique conformal map
H\ v([0, t]) to H with g¢(z) —z — 0 as
zZ— o0 ®

» Theorem: The maps g; satisfy the ODE

oz = oy Bl =2

where U is a continuous R-valued function

» Curves in H can be encoded in terms of
R-valued continuous functions
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L S
Oded Schramm

» PhD in complex analysis and geometry
under Thurston

» Came to probability later in his career
» His ideas have been very influential

> ldea: Use Loewner evolution to study
random curves which come up in random
planar geometry

» percolation paths
» uniform spanning tree branches
> etc...
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Conformal invariance

Physics idea: many models in two-dimensional random geometry should be
conformally invariant

If o: U — V is a conformal map, then the image under ¢ of percolation
interfaces in U look like percolation interfaces in V.
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Schramm-Loewner evolution

» Suppose that «y is a non-crossing curve in H
from 0 to oo

» Let g; be the unique conformal map
H\ v([0, t]) to H with g¢(z) —z — 0 as
Z — OO

» Theorem: The maps g; satisfy the ODE

_ 2
g(z) — U’

where U is a continuous R-valued functions

0:8t(2) g(z) =z
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Schramm-Loewner evolution

» Suppose that «y is a non-crossing curve in H fy(t)
from 0 to oo

» Let g; be the unique conformal map
H\ v([0, t]) to H with g¢(z) —z — 0 as

zZ— 00
» Theorem: The maps g; satisfy the ODE ®
igi(z) = ——2—— gy(z) =z
t8t - gt(z) — Ut’ 8o - gt

where U is a continuous R-valued functions

» Schramm’s observation: if v is a random
curve which comes from a conformally
invariant model (e.g., percolation) then U;
must be a multiple /K of a Brownian °
motion. Ui =g.(7(1))
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SLE(2) © SLE(4)

Simulations due to Tom Kennedy.
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Convergence of percolation to SLEg

» Smirnov: The exploration path between
open and closed sites in critical site
percolation on the A-lattice converges to
SLEe as the mesh size tends to 0

Stanislav Smirnov
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Convergence of percolation to SLEg

» Smirnov: The exploration path between
open and closed sites in critical site
percolation on the A-lattice converges to
SLE¢ as the mesh size tends to 0

» Open problem: prove the convergence of
percolation to SLEs on any other planar
lattice

Stanislav Smirnov
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Self-avoiding walk (SAW)

SAW in plane - 1,000,000 steps
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» Uniform measure on non-self-intersecting
paths starting from x in G of length n %
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Self-avoiding walk (SAW)

SAW in plane - 1,000,000 steps

» Invented by Flory in 1953 {;_55%‘0}

» Graph G =(V,E), xe V,neN

» Uniform measure on non-self-intersecting
paths starting from x in G of length n %M
> Lawler-Schramm-Werner: the scaling limit QUWW
should be SLEg )3 Je?f‘
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Jason Miller (Cambridge) Random planar geometry April 6, 2019 18/30



Loop-erased random walk and the uniform spanning tree

» Invented by Lawler in 1970s

» Obtained by removing the loops of a
random walk chronologically

Jason Miller (Cambridge) Random planar geometry April 6, 2019 18/30



Loop-erased random walk and the uniform spanning tree

» Invented by Lawler in 1970s

» Obtained by removing the loops of a
random walk chronologically

Jason Miller (Cambridge) Random planar geometry April 6, 2019 18 /30



Loop-erased random walk and the uniform spanning tree

» Invented by Lawler in 1970s

» Obtained by removing the loops of a
random walk chronologically

> Lawler-Schramm-Werner: the scaling limit
is SLE>

Jason Miller (Cambridge) Random planar geometry April 6, 2019 18 /30



Loop-erased random walk and the uniform spanning tree

> Invented by Lawler in 1970s

» Obtained by removing the loops of a
random walk chronologically

» Lawler-Schramm-Werner: the scaling limit
is SLE,

» Lawler-Schramm-Werner proved in the
same work that the uniform spanning tree
converges to SLEg
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Loop-erased random walk and the uniform spanning tree

» Invented by Lawler in 1970s

» Obtained by removing the loops of a
random walk chronologically

» Lawler-Schramm-Werner: the scaling limit
is SLE2

» Lawler-Schramm-Werner proved in the
same work that the uniform spanning tree
converges to SLEg
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Outer boundary of Brownian motion

Lawler-Schramm-Werner: the outer boundary

of Brownian motion is SLEg,3
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Lawler-Schramm-Werner: the outer boundary
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Random surfaces

» There has been tremendous progress in understanding random curves in C

» In recent years, there has been a lot of worked aimed at understanding random
surfaces

»> Motivation: physicists starting back in the 1970s has a precise picture of how
many critical models in two-dimensional statistical mechanics should behave at
large scales.

> It is easier to understand these models on a random surface than on a planar
lattice.
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Random planar maps
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A planar map is a finite graph together with an
embedding in the plane so that no edges cross

Its faces are the connected components of the
complement of its edges

A map is a quadrangulation if each face has 4
adjacent edges

A quadrangulation corresponds to a metric space
when equipped with the graph distance
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Its faces are the connected components of the
complement of its edges

A map is a quadrangulation if each face has 4
adjacent edges

A quadrangulation corresponds to a metric space
when equipped with the graph distance

Interested in uniformly random quadrangulations
with n faces — random planar map (RPM).
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Random planar maps

v

A planar map is a finite graph together with an
embedding in the plane so that no edges cross

» |ts faces are the connected components of the
complement of its edges

» A map is a quadrangulation if each face has 4
adjacent edges

» A quadrangulation corresponds to a metric space
when equipped with the graph distance

» Interested in uniformly random quadrangulations
with n faces — random planar map (RPM).

> First studied by Tutte in 1960s while working on the
four color theorem

» Combinatorics: enumeration formulas

» Physics: statistical physics models:
percolation, Ising, UST ...

» Probability: “uniformly random surface,”
Brownian surface
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What is the structure of a typical quadrangulation when the number of faces is large?
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What is the structure of a typical quadrangulation when the number of faces is large?

How many are there? Tutte:
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Random quadrangulation with 25,000 faces

(Simulation due to J.F. Marckert)
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Structure of large random planar maps

» RPM as a metric space. Is there a limit?

(Simulation due to J.F. Marckert)
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BN
Structure of large random planar maps

» RPM as a metric space. Is there a limit?
> Diameter is n*/* (Chaissang-Schaefer)

» Rescaling by n~/4 gives a tight sequence of
metric spaces (Le Gall)

» Subsequentially limiting space is a.s.:

» 4-dimensional (Le Gall)
» homeomorphic to the 2-sphere (Le Gall
and Paulin, Miermont)

» There exists a unique limit in distribution: the
Brownian map (Le Gall, Miermont)

Important tool: bijections which encode the surface
using a gluing of a pair of trees

(Mullin, Schaeffer, Cori-Schaeffer-Vauquelin, Bouttier-Di

(Simulation due to J.F. Marckert) Francesco-Guitter, Sheffield,...)
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BN
Structure of large random planar maps

» RPM as a metric space. Is there a limit?
> Diameter is n*/* (Chaissang-Schaefer)

» Rescaling by n~/4 gives a tight sequence of
metric spaces (Le Gall)

» Subsequentially limiting space is a.s.:

» 4-dimensional (Le Gall)
» homeomorphic to the 2-sphere (Le Gall
and Paulin, Miermont)

» There exists a unique limit in distribution: the
Brownian map (Le Gall, Miermont)

Important tool: bijections which encode the surface
using a gluing of a pair of trees

(Mullin, Schaeffer, Cori-Schaeffer-Vauquelin, Bouttier-Di

(Simulation due to J.F. Marckert) Francesco-Guitter, Sheffield,...)

Brownian map also described in terms of trees (CRT)
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Random quadrangulation
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Sampled using H-C bijection.
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Red tree

Sampled using H-C bijection.
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Red and blue trees
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Sampled using H-C bijection.
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Path snaking between the trees. Encodes the trees and how they are glued together.
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How was the graph embedded into R??
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Sampled using H-C bijection.
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Can subivide each quadrilateral to obtain a triangulation without multiple edges.

Sampled using H-C bijection.
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Circle pack the resulting triangulation.

Sampled using H-C bijection. Packed with Stephenson’s CirclePack.
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Circle pack the resulting triangulation.

Sampled using H-C bijection. Packed with Stephenson’s CirclePack.
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What is the “limit" of this embedding? Circle packings are related to conformal maps.

Sampled using H-C bijection. Packed with Stephenson’s CirclePack.

Jason Miller (Cambridge) Random planar geometry April 6, 2019 25 /30



Picking a surface at random in the continuum

Uniformization theorem: every Riemannian surface homeomorphic to the unit disk D
can be conformally mapped to the disk.

2
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Isothermal coordinates: Metric for the surface takes the form e”?)(dx? + dy?) for some
smooth function p where dx? + dy? is the Euclidean metric.
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Picking a surface at random in the continuum

Uniformization theorem: every Riemannian surface homeomorphic to the unit disk D
can be conformally mapped to the disk.

2

Isothermal coordinates: Metric for the surface takes the form e”?)(dx? + dy?) for some
smooth function p where dx? + dy? is the Euclidean metric.
= Can parameterize the surfaces homeomorphic to D with smooth functions on D.

> If p=0, get D
> If Ap =0, i.e. if pis harmonic, the surface described is flat
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Picking a surface at random in the continuum

Uniformization theorem: every Riemannian surface homeomorphic to the unit disk D
can be conformally mapped to the disk.

2

Isothermal coordinates: Metric for the surface takes the form e”?)(dx? + dy?) for some
smooth function p where dx? + dy? is the Euclidean metric.
= Can parameterize the surfaces homeomorphic to D with smooth functions on D.

> If p=0, get D
> If Ap =0, i.e. if pis harmonic, the surface described is flat

Question: Which measure on p? If we want our surface to be a perturbation of a flat
metric, natural to choose p as the canonical perturbation of a harmonic function.
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The Gaussian free field

» The discrete Gaussian free field (DGFF) is a
Gaussian random surface model.
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The Gaussian free field

» The discrete Gaussian free field (DGFF) is a
Gaussian random surface model.

» Measure on functions h: D — R for D C Z? and
hlap = v with density respect to Lebesgue
measure on RIP!:

2o (—; S () - h(y>)2>

X~y

W/
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The Gaussian free field

» The discrete Gaussian free field (DGFF) is a
Gaussian random surface model.

» Measure on functions h: D — R for D C Z? and
hlap = v with density respect to Lebesgue
measure on RIP!:

2o (—; S () - h(y)f)

X~y

» Natural perturbation of a harmonic function
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The Gaussian free field

» The discrete Gaussian free field (DGFF) is a
Gaussian random surface model.

» Measure on functions h: D — R for D C Z? and
hlap = v with density respect to Lebesgue
measure on RIP!:

2o (—; S (h(x) — h(y)f)

» Natural perturbation of a harmonic function

» Fine mesh limit: converges to the continuum GFF,
i.e. the standard Gaussian wrt the Dirichlet inner
product

(f,g)v —/Vf(x) Vg(x)dx.
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The Gaussian free field

» The discrete Gaussian free field (DGFF) is a
Gaussian random surface model.

» Measure on functions h: D — R for D C Z? and
hlap = v with density respect to Lebesgue
measure on RIP!:

2o <—§ S (h(x) — h(y)f)

» Natural perturbation of a harmonic function

» Fine mesh limit: converges to the continuum GFF,
i.e. the standard Gaussian wrt the Dirichlet inner
product

(f,g)v —/Vf(x) Vg(x)dx.

» Continuum GFF not a function — only a
generalized function
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BN
Liouville quantum gravity

v=0.5

> Liouville quantum gravity: " dz
where h is a GFF and v € [0, 2)

(Number of subdivisions)
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Liouville quantum gravity

v=0.5

> Liouville quantum gravity: " dz
where h is a GFF and v € [0, 2)

» Introduced by Polyakov in the 1980s

» Does not make literal sense since h
takes values in the space of
distributions

(Number of subdivisions)
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Liouville quantum gravity
v=0.5

> Liouville quantum gravity: " dz
where h is a GFF and v € [0, 2)
» Introduced by Polyakov in the 1980s
» Does not make literal sense since h
takes values in the space of
distributions
» Has been made sense of as a random
area measure using a regularization
procedure
» Can compute areas of regions
and lengths of curves
» Does not come with an obvious
notion of “distance”

(Number of subdivisions)
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where his a GFF and v € [0,2)
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e
A current direction of research

RPM - most natural random surface model for a combinatorialist

LQG - most natural random surface model for a complex analyst:

e“’h(z)(dx2 + dyz)
where his a GFF.
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A current direction of research
RPM - most natural random surface model for a combinatorialist

LQG - most natural random surface model for a complex analyst:

e'yh(z)(dX2 + dy2)
where his a GFF.
» Make sense of Liouville quantum gravity
> Area measure constructed for all v € (0, 2] (Duplantier-Sheffield, Kahane)

> Metric space structure for v = 1/8/3 (M.-Sheffield)
> Metric space for general v € (0,2]?
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e
A current direction of research

RPM - most natural random surface model for a combinatorialist

LQG - most natural random surface model for a complex analyst:

e“’h(z)(dx2 + dy2)
where his a GFF.

» Make sense of Liouville quantum gravity

> Area measure constructed for all v € (0, 2] (Duplantier-Sheffield, Kahane)
> Metric space structure for v = 1/8/3 (M.-Sheffield)
> Metric space for general v € (0,2]?

» Relate Liouville quantum gravity to random planar maps

> /8/3-LQG = to the Brownian map (M.-Sheffield)

> /8/3-LQG + SLEg/3 =
(Gwynne-M.)

> \/8/73—LQG + SLE¢ = random planar map + percolation (Gwynne-M.)

> /2-LQG + SLEg = random planar map + uniform spanning tree (Sheffield,
Duplantier-M.-Sheffield)

random planar map + self-avoiding walk
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