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Overview

Random two-dimensional geometry is an area of probability theory which studies
random planar curves, shapes, and surfaces.

Motivated by questions from statistical mechanics
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Overview

Percolation Brownian motion Random planar maps

Uniform spanning tree
Schramm-Loewner

evolution Liouville quantum gravity

Jason Miller (Cambridge) Random planar geometry April 6, 2019 3 / 30



Percolation

I Mathematical model for how a gas or a
fluid flows through a porous medium

I Introduced in the mathematics literature by
Hammersley and Welsh (1957)

I Motivation: understand the flow of gas
through a gas mask

I Graph G = (V ,E), p ∈ (0, 1)

I Color the hexagons red or black based on
the toss of an independent p-coin

I Interested in connectivity properties of the
resulting graph: cluster boundaries

I How does one mathematically describe the
limit of the interface as the mesh size → 0?
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Percolation on a 1000× 1000 box, conformally mapped to D. Shown are the clusters

which touch the boundary.
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Two-dimensional Brownian motion

Two-dimensional Brownian motion
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Two-dimensional Brownian motion

Benoit Mandelbrot (1924-2010)
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Two-dimensional Brownian motion

Mandelbrot set
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Two-dimensional Brownian motion

Two-dimensional Brownian motion
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Two-dimensional Brownian motion

Can one mathematically analyze the outer boundary of Brownian motion?
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Uniform spanning tree

I Suppose that G = (V ,E) is a graph

I A spanning tree is a subgraph of G with
vertex set V and without any cycles

I Fundamental in many algorithms in
computer science

I If G is finite then the number of spanning
trees is finite

I A uniform spanning tree is a spanning tree
chosen uniformly at random

I Fundamental in many randomized
algorithms in computer science

I Related to electrical networks (Kirchhoff)

I How does one mathematically describe a
large uniform spanning tree?
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Recap

Percolation Brownian motion Uniform spanning tree

I Models (and others) have been around for many decades, studied by
mathematicians and physicists

I Tremendous progress in the last 20 years, much of it starting with an idea of Oded
Schramm combining ideas from complex analysis, geometry, and probability

I In a nutshell, Schramm discovered a tractable way of describing the random curves
which appear in these models in a unifed manner
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Riemann mapping theorem

Suppose that U,V are simply connected domains in C. Then there exists a
conformal map ϕ : U → V .

ϕ

U V

In fact, there is exactly a three-parameter family of conformal maps.
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Loewner evolution

I Mathematical tool invented by Charles
Loewner in the 1920s to encode curves in C

I Developed while trying to solve the
Bieberbach conjecture, a famous problem
in complex analysis

I Example: consider the straight line
γ(t) =

√
2ti in H = {z ∈ C : Im(z) > 0}

I gt(z) =
√
z2 + 4t conformally maps

H \ [0,
√

2ti ] to H

I

∂tgt(z) =
4

2
√
z2 + 4t

=
2

gt(z)

I This ODE (for each fixed z) determines the
family of maps (gt) which in turn
determines γ

I This is called the Loewner evolution for γ
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Loewner evolution

I Suppose that γ is a non-crossing curve in H
from 0 to ∞

I Let gt be the unique conformal map
H \ γ([0, t]) to H with gt(z)− z → 0 as
z →∞

I Theorem: The maps gt satisfy the ODE

∂tgt(z) =
2

gt(z)− Ut
, g0(z) = z

where U is a continuous R-valued function

I Curves in H can be encoded in terms of
R-valued continuous functions

γ(t)
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Oded Schramm

I PhD in complex analysis and geometry
under Thurston

I Came to probability later in his career

I His ideas have been very influential

I Idea: Use Loewner evolution to study
random curves which come up in random
planar geometry

I percolation paths
I uniform spanning tree branches
I etc...
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Conformal invariance

Physics idea: many models in two-dimensional random geometry should be
conformally invariant

ϕ

U V

If ϕ : U → V is a conformal map, then the image under ϕ of percolation
interfaces in U look like percolation interfaces in V .
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Schramm-Loewner evolution

I Suppose that γ is a non-crossing curve in H
from 0 to ∞

I Let gt be the unique conformal map
H \ γ([0, t]) to H with gt(z)− z → 0 as
z →∞

I Theorem: The maps gt satisfy the ODE

∂tgt(z) =
2

gt(z)− Ut
, g0(z) = z

where U is a continuous R-valued functions

I Schramm’s observation: if γ is a random
curve which comes from a conformally
invariant model (e.g., percolation) then Ut

must be a multiple
√
κ of a Brownian

motion.

γ(t)

gt

Ut = gt(γ(t))
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Simulations due to Tom Kennedy.
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Convergence of percolation to SLE6

I Smirnov: The exploration path between
open and closed sites in critical site
percolation on the 4-lattice converges to
SLE6 as the mesh size tends to 0

I Open problem: prove the convergence of
percolation to SLE6 on any other planar
lattice

Stanislav Smirnov
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Self-avoiding walk (SAW)

I Invented by Flory in 1953

I Graph G = (V ,E), x ∈ V , n ∈ N

I Uniform measure on non-self-intersecting
paths starting from x in G of length n

I Lawler-Schramm-Werner: the scaling limit
should be SLE8/3
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Loop-erased random walk and the uniform spanning tree

I Invented by Lawler in 1970s

I Obtained by removing the loops of a
random walk chronologically

I Lawler-Schramm-Werner: the scaling limit
is SLE2

I Lawler-Schramm-Werner proved in the
same work that the uniform spanning tree
converges to SLE8
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Outer boundary of Brownian motion

Lawler-Schramm-Werner: the outer boundary

of Brownian motion is SLE8/3
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Random surfaces

I There has been tremendous progress in understanding random curves in C

I In recent years, there has been a lot of worked aimed at understanding random
surfaces

I Motivation: physicists starting back in the 1970s has a precise picture of how
many critical models in two-dimensional statistical mechanics should behave at
large scales.

I It is easier to understand these models on a random surface than on a planar
lattice.
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Random planar maps
I A planar map is a finite graph together with an

embedding in the plane so that no edges cross

I Its faces are the connected components of the
complement of its edges

I A map is a quadrangulation if each face has 4
adjacent edges

I A quadrangulation corresponds to a metric space
when equipped with the graph distance

I Interested in uniformly random quadrangulations
with n faces — random planar map (RPM).

I First studied by Tutte in 1960s while working on the
four color theorem

I Combinatorics: enumeration formulas
I Physics: statistical physics models:

percolation, Ising, UST ...
I Probability: “uniformly random surface,”

Brownian surface
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What is the structure of a typical quadrangulation when the number of faces is large?

How many are there? Tutte:

2× 3n

(n + 1)(n + 2)

(
2n
n

)
.

Jason Miller (Cambridge) Random planar geometry April 6, 2019 22 / 30



What is the structure of a typical quadrangulation when the number of faces is large?

How many are there? Tutte:

2× 3n

(n + 1)(n + 2)

(
2n
n

)
.

Jason Miller (Cambridge) Random planar geometry April 6, 2019 22 / 30



What is the structure of a typical quadrangulation when the number of faces is large?

How many are there? Tutte:

2× 3n

(n + 1)(n + 2)

(
2n
n

)
.

Jason Miller (Cambridge) Random planar geometry April 6, 2019 22 / 30



Random quadrangulation with 25,000 faces

(Simulation due to J.F. Marckert)
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Structure of large random planar maps

(Simulation due to J.F. Marckert)

I RPM as a metric space. Is there a limit?

I Diameter is n1/4 (Chaissang-Schaefer)

I Rescaling by n−1/4 gives a tight sequence of
metric spaces (Le Gall)

I Subsequentially limiting space is a.s.:

I 4-dimensional (Le Gall)
I homeomorphic to the 2-sphere (Le Gall

and Paulin, Miermont)

I There exists a unique limit in distribution: the
Brownian map (Le Gall, Miermont)

Important tool: bijections which encode the surface
using a gluing of a pair of trees

(Mullin, Schaeffer, Cori-Schaeffer-Vauquelin, Bouttier-Di

Francesco-Guitter, Sheffield,...)

Brownian map also described in terms of trees (CRT)
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Random quadrangulation

Sampled using H-C bijection.

Packed with Stephenson’s CirclePack.

Jason Miller (Cambridge) Random planar geometry April 6, 2019 25 / 30



Red tree

Sampled using H-C bijection.

Packed with Stephenson’s CirclePack.
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Red and blue trees

Sampled using H-C bijection.

Packed with Stephenson’s CirclePack.
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Path snaking between the trees. Encodes the trees and how they are glued together.

Sampled using H-C bijection.

Packed with Stephenson’s CirclePack.
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How was the graph embedded into R2?

Sampled using H-C bijection.

Packed with Stephenson’s CirclePack.
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Can subivide each quadrilateral to obtain a triangulation without multiple edges.

Sampled using H-C bijection.

Packed with Stephenson’s CirclePack.
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Circle pack the resulting triangulation.

Sampled using H-C bijection. Packed with Stephenson’s CirclePack.
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What is the “limit” of this embedding? Circle packings are related to conformal maps.

Sampled using H-C bijection. Packed with Stephenson’s CirclePack.
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Picking a surface at random in the continuum
Uniformization theorem: every Riemannian surface homeomorphic to the unit disk D
can be conformally mapped to the disk.

ψ

Isothermal coordinates: Metric for the surface takes the form eρ(z)(dx2 + dy 2) for some
smooth function ρ where dx2 + dy 2 is the Euclidean metric.
⇒ Can parameterize the surfaces homeomorphic to D with smooth functions on D.

I If ρ = 0, get D

I If ∆ρ = 0, i.e. if ρ is harmonic, the surface described is flat

Question: Which measure on ρ? If we want our surface to be a perturbation of a flat

metric, natural to choose ρ as the canonical perturbation of a harmonic function.
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The Gaussian free field

I The discrete Gaussian free field (DGFF) is a
Gaussian random surface model.

I Measure on functions h : D → R for D ⊆ Z2 and
h|∂D = ψ with density respect to Lebesgue
measure on R|D|:

1

Z exp

(
−1

2

∑
x∼y

(h(x)− h(y))2

)

I Natural perturbation of a harmonic function

I Fine mesh limit: converges to the continuum GFF,
i.e. the standard Gaussian wrt the Dirichlet inner
product

(f , g)∇ =
1

2π

∫
∇f (x) · ∇g(x)dx .

I Continuum GFF not a function — only a
generalized function
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Liouville quantum gravity

I Liouville quantum gravity: eγh(z)dz
where h is a GFF and γ ∈ [0, 2)

I Introduced by Polyakov in the 1980s

I Does not make literal sense since h
takes values in the space of
distributions

I Has been made sense of as a random
area measure using a regularization
procedure

I Can compute areas of regions
and lengths of curves

I Does not come with an obvious
notion of “distance”

γ = 0.5

(Number of subdivisions)
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A current direction of research

RPM - most natural random surface model for a combinatorialist

LQG - most natural random surface model for a complex analyst:

eγh(z)(dx2 + dy 2)

where h is a GFF.

I Make sense of Liouville quantum gravity

I Area measure constructed for all γ ∈ (0, 2] (Duplantier-Sheffield, Kahane)
I Metric space structure for γ =

√
8/3 (M.-Sheffield)

I Metric space for general γ ∈ (0, 2]?

I Relate Liouville quantum gravity to random planar maps

I
√

8/3-LQG = to the Brownian map (M.-Sheffield)
I
√

8/3-LQG + SLE8/3 = random planar map + self-avoiding walk
(Gwynne-M.)

I
√

8/3-LQG + SLE6 = random planar map + percolation (Gwynne-M.)
I
√

2-LQG + SLE8 = random planar map + uniform spanning tree (Sheffield,
Duplantier-M.-Sheffield)
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A current direction of research

RPM - most natural random surface model for a combinatorialist

LQG - most natural random surface model for a complex analyst:

eγh(z)(dx2 + dy 2)

where h is a GFF.
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Ευχαριστώ πολύ!
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